T-gard™ TNC3
Thermally Conductive Insulators

HIGH PERFORMANCE THERMAL INTERFACE PRODUCTS
T-gard™ TNC-3 is a thermally conductive, electrically insulative, and heat curable adhesive material. It is comprised of PEN film coated with an uncured thermally conductive epoxy/ceramic composite on both sides. The T-gard TNC-3 material eliminates the mechanical attachment of clips and or screws for mounting the TO- power components to their heat sink.

The T-gard TNC-3 permanently bonds the TO- components to the heat sink with a simple tack and cure process. The T-gard TNC-3 flows to completely wet out the component and heat sink surfaces during the elevated temperature and pressure tacking process. Once the tacking process is completed the assembly is cured to provide the permanent bond.

FEATURES AND BENEFITS
• Eliminates mechanical component costs
• Eliminates dielectric failure potential with screw mounted assemblies
• Reduces the area required around the device
• Allows for tighter component locations with the power supply
• Provides more consistent thermal performance
• Non-silicone based

APPLICATIONS
• Bond TO- power components to heat sink
Our customers are reminded that they bear the responsibility for testing Laird Technologies’ materials for their proposed use. Any information furnished by Laird Technologies and its agents is believed to be accurate and reliable, but our customers must bear all responsibility for the use and application of Laird Technologies’ materials since Laird Technologies and its agents cannot be aware of all potential uses. Laird Technologies makes no warranties as to the fitness, merchantability, or suitability of any Laird Technologies’ materials or products for any specific or general uses. Laird Technologies shall not be liable for incidental or consequential damages of any kind. All Laird Technologies’ products are sold pursuant to the Laird Technologies’ domestic terms and conditions of sale in effect from time to time, a copy of which will be furnished upon request. A15561-00 Rev A, 2/05/07

© 2009 All Rights Reserved. Laird Technologies is a registered trademark of Laird Technologies, Inc.

ELECTRICAL PROPERTIES	TEST METHOD	TYPICAL VALUES
Dielectric Breakdown Voltage* | ASTM D149 | >6000 VAC
Volume Resistivity, Ohm-cm | ASTM D257 | 5.5E10
Dielectric Constant @ 1 MHz | ASTM D257 | 3.8

THERMAL PROPERTIES	TEST METHOD	TYPICAL VALUES
Post-cured thermal impedance, °C-in²/W | ASTM D5470 Modified | <0.40 °C-in²/watt (2.56 °C-cm²/watt)

MECHANICAL PROPERTIES	TEST METHOD	TYPICAL VALUES
Total Thickness | LT Method | 0.005 inch (0.127 mm)
Dielectric Film Thickness | LT Method | 0.001 inch (0.0254 mm)
Tensile Strength | ASTM D412 | 7.6 Kpsi (52.4 mPa)
Elongation | ASTM D412 | 85%
Post-cured Lap Shear | ASTM D3163 Modified | >0.600 Kpsi (>4.14 mPa)
Color | Visual | White
UL Flammability | ASTM D635 | 94V-0

*Material cure in oven and not laminated into an assembly.

APPLICATION PROCEDURE
1. Make sure both surfaces are clean.
2. Peel off one liner, and apply material to the heat-sink surface. Apply 100 psi for 10 seconds.
3. Peel off the other liner, and place warm power component (60 °C) on the top of material. Apply 75 psi for 10 seconds.
4. Cure the assembly at 160 °C for 6 minutes.

SHELF LIFE
Six months at room temperature (≤ 25 °C).